dimanche 27 mars 2016

MEPT (Maximum Efficiency Point Tracking) pour une chaîne de traction d'un véhicule électrique

Pour la première fois, nous faisons de la publicité (de l'information) sur un article qui sera présenté au Symposium de Génie Électrique en juin 2016 (SGE_2016) :
MEPT_Maximum_Efficiency_Point_Tracking_pour_une_chaine_de_traction_d'un_vehicule_electrique

Dans cet article, nous présentons une méthode pour optimiser en temps réel le rendement d'une chaine de motorisation.
Nous proposons en bibliographie quelques articles présentant cette problématique de recherche de l'efficacité optimale dans le cas d'autres applications.
Cette chaine de motorisation comprend une machine synchrone triphasée (à commutation de flux et à double excitation) associée à une onduleur triphasé classique à deux niveaux.
La méthode présentée peut très bien s'appliquer aux cas des machines synchrones à excitation réglable, mais ces dernières sont peu employées dans la motorisation de véhicule électrique compte tenu de leurs performances massiques.

Si nous faisons cette publicité avant la conférence, c'est pour suscité le débat et les questions.
Rendez vous sur internet et/ou à la conférence.

mardi 1 mars 2016

Performance and Efficiency Comparisons for Interior PM and Flux-Switching PM Machines with Ferrite Magnets for Automotive Traction Applications

Auteurs : James D. McFarland, T.M. Jahns, Ayman M. EL-Refaie
Lien : http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=7310574&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D7310574

Dans cet article, les auteurs dimensionnent 3 machines synchrones dont les aimants sont en ferrite (Br=0,33T).
Le cahier des charges est extrait d'un programme de recherche américain :"FreedomCar 2020" qui se nomme maintenant : "U.S. DRIVE 2020.
US Dept. of Energy, "Development of power electronics and electric motor technology for plug-in hybrid electric vehicles, internal combustion engine hybrid electric vehicles and fuel cell vehicle traction drive applications," vol. Funding Opportunity Announcement No. DE-PS26-06NT43001-00, ed, 22 Sept. 2006.

Nous reproduisons les trois premières pages de l'article et vous trouverez ensuite la liste bibliographique.



[1] T. M. Jahns, G. B. Kliman, and T. W. Neumann, "Interior Permanent-Magnet Synchronous Motors for Adjustable-Speed Drives," Industry Applications, IEEE Transactions on, vol. IA-22, pp. 738-747, 1986.
[2] P.B. Reddy, A.M. El-Refaie, H. Kum-Kang, J.K. Tangudu, T.M. Jahns, "Comparison of Interior and Surface PM Machines Equipped With Fractional-Slot Concentrated Windings for Hybrid Traction Applications," Energy Conversion, IEEE Trans. on, vol. 27, pp. 593-602, 2012.
[3] J. K. Tangudu and T. M. Jahns, "Comparison of interior PM machines with concentrated and distributed stator windings for traction applications," in Vehicle Power and Propulsion Conference (VPPC), 2011 IEEE, 2011, pp. 1-8.
[4] M. Olszewski, T. A. Burress, C. L. Coomer, S. L. Campbell, L. E. Seiber, L. D. Marlino, et al., "Evaluation of the 2007 Toyota Camry Hybrid Drive System," U. S. Department of Energy, Wash., D.C., 2008.
[5] R. H. Staunton, C. W. Ayers, L. D. Marlino, J. N. Chiasson, and T. A. Burress, "Evaluation of the 2004 Toyota Prius Hybrid Electric Drive System," O. R. N. Laboratory, Ed., ed. Oak Ridge, TN, 2006.
[6] T. A. Burress, S. L. Campbell, C. L. Coomer, C. W. Ayers, A. A. Wereszczak, J. P. Cunningham, et al., "Evaluation of the 2010 Toyota Prius Hybrid Synergy Drive System," ed. Oak Ridge, TN: Oak Ridge National Laboratory, 2011.
[7] A.S. Thomas, Z.Q. Zhu, G.W. Jewell, "Comparison of flux switching and surface mounted permanent magnet generators for high-speed applications," Electr. Systems in Transp., IET, vol. 1, pp. 111-116, 2011.
[8] Y. Pang, Z. Q. Zhu, D. Howe, S. Iwasaki, R. Deodhar, and A. Pride, "Comparative study of flux-switching and interior permanent magnet machines," in Electrical Machines and Systems, 2007. ICEMS. International Conference on, 2007, pp. 757-762.
[9] J. D. McFarland, T. M. Jahns, and A. M. El-Refaie, "Demagnetization performance characteristics of flux switching permanent magnet machines," in Electrical Machines (ICEM), 2014 International
Conference on, 2014, pp. 2001-2007.
[10] W. Z. Fei and J. X. Shen, "Novel Permanent Magnet Switching Flux Motors," in Universities Power Engineering Conference, 2006. UPEC '06. Proceedings of the 41st International, 2006, pp. 729-733.
[11] Y. J. Zhou and Z. Q. Zhu, "Torque Density and Magnet Usage Efficiency Enhancement of Sandwiched Switched Flux Permanent Magnet Machines Using V-Shaped Magnets," Magnetics, IEEE Transactions on, vol. 49, pp. 3834-3837, 2013.
[12] P. Guglielmi, B. Boazzo, E. Armando, G. Pellegrino, and A. Vagati, "Magnet minimization in IPM-PMASR motor design for wide speed range application," in Energy Conversion Congress and Exposition (ECCE), 2011 IEEE, 2011, p. 4201.
[13] F. Liang, B.H. Lee, J.J. Lee, H.J. Kim, and H. Jung-Pyo, "Study on high efficiency characteristics of interior permanent magnet synchronous motor with different magnet material," in Electrical Machines & Systems, 2009. ICEMS 2009. Intl Conference on, 2009, pp. 1-4.
[14] J.D. McFarland, T.M. Jahns, A.M. El-Refaie, and P.B. Reddy, "Effect of magnet properties on power density and flux-weakening performance of high-speed interior permanent magnet synchronous machines," in Energy Conversion Congress & Expo (ECCE), 2014 IEEE, pp. 4218-25.
[15] E. Hoang, A. H. Ben Ahmed, and J. Lucidarme, "Switching Flux Permanent Magnet Polyphased Synchronous Machines," presented at the EPE, Trondheim, 1997.
[16] US Dept. of Energy, "Development of power electronics and electric motor technology for plug-in hybrid electric vehicles, internal combustion engine hybrid electric vehicles and fuel cell vehicle traction drive applications," vol. Funding Opportunity Announcement No. DE-PS26-
06NT43001-00, ed, 22 Sept. 2006.
[17] Z.Q. Zhu, Y. Pang, D. Howe, S. Iwasaki, R. Deodhar, A. Pride, "Analysis of electromagnetic performance of flux-switching permanent-magnet Machines by nonlinear adaptive lumped parameter magnetic circuit model," Magnetics, IEEE Transactions on, vol. 41, pp. 4277-87, 2005.
[18] T. Raminosoa, A. El-Refaie, D. Pan, K. Huh, J. Alexander, K. Grace, and al., "Reduced Rare-Earth Flux Switching Machines for Traction Applications," Industry Applications, IEEE Transactions on, 2015.